B CO2Meter.com

CO2 Measurement Specialists

Application Note AN-102:
Arduino 12C Interface to K-30 Sensor

Introduction

The Arduino UNO, MEGA 1280 or MEGA 2560 are ideal microcontrollers for operating SenseAir’s K-30
CO2 sensor. The connection to the K-30 is referred to 12C or TWI (Two Wire Interface). We
recommend using the Arduino software Graphical User Interface (GUI).

If you are new to Arduino these low cost development boards are available from many sources. We
recommend you start with genuine Arduino products for dependable results.

Run the Blink Example

The best way to become familiar with the GIU or to verify your Arduino board is operating properly is
to create an Arduino project and run the example Blink. This simple test program confirms that a
number of connection details and the GUI are working properly.

Caution: Do not connect the Arduino board to the USB port until the Arduino software is installed.
Otherwise Windows will install a generic driver and the Arduino will not operate.

Step 1: Install Arduino software on your computer. From this page select the Windows Installer.
https://www.arduino.cc/en/Main/Software

Step 2: To run the Blink example follow these instructions: https://www.arduino.cc/en/Tutorial/Blink

Connect the K30 Sensor

Refer to the wiring diagrams below for the Arduino
UNO or MEGA. The connections for Arduino MEGA
1280 are identical to the Mega 2560.

A 6-9 VDC, 500 ma or greater, external power supply is
required. The K-30 sensor draws 300+ mA when
sampling. Using the voltage off the Arduino board from
USB will give erratic results. Connect the power supply
as shown.

© 21 March 2017 CO2Meter, Inc. All Rights Reserved 1

R CO2Meter.com

CO2 Measurement Specialists

In addition, two 4.7K ohm % watt 5% pull-up resistors are required. Pull-up resistors connect between
a signal and a positive voltage to eliminate floating and insure pins are either in a high or low state.
These can be found for only a few pennies apiece at any major electronics store.

Ardunio UNO to K-30 connections via i2c

.|

4.7K pullup

L4
L]
L d
.
resistors e
.o
)
LR
@
LR J
LR
LR]
e
e
L]
a®
s ®
y @
\ 2 e
+0Q
6to9
vDC
-O—

K-30 sensor 12C connection to Arduino UNO

Ardunio Mega to K30 via i2c

NESELN

TE.d L)

tssssidsssssssssess
s

K-30 sensor uses same pin connections to Arduino Mega 2560 or 1280

© 21 March 2017 CO2Meter, Inc. All Rights Reserved 2

R CO2Meter.com

CO2 Measurement Specialists

Creating an Arduino Project

1. Check that your Arduino is connected to your USB port and on-board LED indicates power is on.
2. Click on or copy/paste this link to the zip file that contains the Arduino AN-102.ino file.

http://www.co2meters.com/Documentation/AppNotes/AN102-K30-Sensor-Arduino-12C.zip

3. The Arduino GUI will start and ask the following;

@ The file "Arduino_to_[2C.ine" needs to be inside

a sketch folder named "Arduino_to_|2C",

Create this folder, move the file, and continue?

OK | | Cancel |

4. Click on OK. Observe the Arduino project code is displayed.
Click on Sketch >> Verify/Compile. The project should compile without errors.
6. Verify that your Arduino board is recognized correctly:
a. Click on Tools. Set Board to Arduino UNO or MEGA.
b. Confirm that Processor matches your Arduino: UNO or MEGA or MEGA 2560.
7. Click on Upload. When done uploading, your project is now running in the Arduino board.
8. To view program operation, click on Tools >> Serial Monitor. Observe the following:

b

| =

Applicaticon Note AN-102: Interface Arduino to K-30 M
C02 Value: 5948
C02 Value: 598
C02 Value: 598
C02 Value: 595
C02 Value: 595
C02 WValue: 595
C02 Value: 595
C02 Value: 595
C02 WValue: 595
C02 Value: 595
C02 Value: 595
C02 WValue: 595

Autoscroll Mo line ending w | |960[J baud

© 21 March 2017 CO2Meter, Inc. All Rights Reserved 3

B CO2Meter.com

CO2 Measurement Specialists

Appendix A:

The source code for the .ino and .txt files are below:

// CO2 Meter K-series Example Interface

// Revised by Marv Kausch, 7/2016 at C02 Meter <co2Zmeter.com>
// Talks via 12C to K30/K33 Sensors and displays C0O2 values
#include <Wire_h>

// We will be using the 12C hardware interface on the Ardulno in
// combination with the built-in Wire library to interface.

// Arduino analog input 5 - 12C SCL

// Arduino analog input 4 - 12C SDA

/*

In this example we will do a basic read of the CO2 value and checksum
verification. For more advanced applications see the 12C Comm guide.
*/
int co2Addr = 0x68;

// This is the default address of the C02 sensor, 7bits shifted left.
void setup(Q {

Serial .begin(9600);

Wire.begin);

pinMode(13, OUTPUT); // address of the Arduino LED indicator

Serial .printIn("Application Note AN-102: Interface Arduino to K-30");
by
/1117777777777 7777777777777777777777777/77777/777/77/777/77/77/777777
// Function : int readC02()

// Returns : CO2 Value upon success, 0 upon checksum failure

// Assumes : - Wire library has been imported successfully.

// - LED is connected to 10 pin 13

// - C02 sensor address is defined in co2_addr

/1177777777777 77777777777/77/7777777777/777/777/77/77/77/77/7/77777777
int readC02()

{

int co2_value = 0; // Store the CO2 value inside this variable.

digitalWrite(13, HIGH); // turn on LED
// On most Arduino platforms this pin is used as an indicator light.

/117177777777 //77//77//777/
/* Begin Write Sequence */
111717777777/ /777//77//777/

Wire.beginTransmission(co2Addr);

Wire.write(0x22);
Wire.write(0x00);

© 21 March 2017 CO2Meter, Inc. All Rights Reserved 4

B CO2Meter.com

CO2 Measurement Specialists

Wire.write(0x08);
Wire.write(0x2A);

Wire.endTransmission();

1117177777777/ 77/7//77/7/77/
/* End Write Sequence. */
1117177777777/ 77///77//777

/*
Wait 10ms for the sensor to process our command. The sensors®s
primary duties are to accurately measure CO2 values. Waiting 10ms
ensures the data i1s properly written to RAM

*/

delay(10);

/111777777777 /77/77/77/777

/* Begin Read Sequence */

/117777777777 //7/77/77/777

/*
Since we requested 2 bytes from the sensor we must read in 4 bytes.
This includes the payload, checksum, and command status byte.

*/

Wire.requestFrom(co2Addr, 4);

byte i = 0;
byte buffer[4] = {0, 0, 0, 0};

/*
Wire.available() is not necessary. Implementation is obscure but we
leave it in here for portability and to future proof our code

*/
while (Wire.available())
{
buffer[i] = Wire.read();
i++;
}

/111777777 7//77//777/777
/* End Read Sequence */
/11771777777 7//7/7//777/777

© 21 March 2017 CO2Meter, Inc. All Rights Reserved 5

B CO2Meter.com

CO2 Measurement Specialists

/*
Using some bitwise manipulation we will shift our buffer
into an integer for general consumption

*/

co2_value = 0;

co2 _value |= buffer[l] & OxFF;
co2_value = co2_value << 8;

co2_value |= buffer[2] & OxFF;

byte sum = 0; //Checksum Byte
sum = buffer[0] + buffer[1l] + buffer[2]; //Byte addition utilizes overflow

it (sum == buffer[3])

{
// Success!
digitalWrite(13, LOW);
return co2_ value;

}

else
{
// Failurel
/*
Checksum failure can be due to a number of factors,
fuzzy electrons, sensor busy, etc.
=/

digitalWrite(13, LOW);
return O;
3

}
void loop() {

int co2Value = readC02();

it (co2value > 0)

{
Serial .print(*'C02 Value: ™);
Serial .println(co2value);

}

else

{

}
delay(2000);

Serial .printIn(*'Checksum failed / Communication failure');

© 21 March 2017 CO2Meter, Inc. All Rights Reserved 6

